

ПОВЫШЕНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ

УНИВЕРСИТЕТСКОЙ БОЛЬНИЦЫ В ГЕРМАНИИ

Клаудиус Райсер

В России большое количество производственных зданий и помещений различного назначения, построенных еще в середине XX века, не соответствуют действующим требованиям по энергосбережению и являются энергозатратными. Выявить потенциал энергосбережения и повысить энергоэффективность таких объектов позволяет энергосервис. Приведем успешный пример его применения, реализованный в Германии на существующем лабораторном здании университетской больницы, в результате чего было достигнуто сокращение расхода энергии на 27 %.

В конце 2013 года было принято решение полностью обновить лабораторные помещения, расположенные на верхнем этаже здания Лаборатории клеточной и молекулярной биологии (далее – здание ZMF) университетской больницы (см *)), и систему вентиляции, относящуюся к ним. Это стало первоочередной задачей, поскольку системы центральной вентиляции, обслуживающие офисные помещения, зоны отдыха и туалетные

комнаты, сильно устарели технически и морально: мощность вентиляторов 1980-х годов выпуска не регулировалась (их можно было только включить, и тогда установки все время работали в режиме полной нагрузки, или выключить), а дистанционное управление было невозможно. Кроме того, при модернизации здания ZMF в 2006 году (см. *)) к центру управления университетской больницы была подключена лишь часть инженерного оборудова-

ния, и, значит, предполагалось подсоединить к нему оставшиеся установки. В числе основных целей проекта по модернизации — существенное сокращение потребления энергии, повышение надежности техники, увеличение удобства и простоты пользования инженерным оборудованием для пользователей и службы эксплуатации с помощью дистанционного доступа, мониторинга и оповещения о нештатных ситуациях.

Анализ состояния здания

Для решения задачи по восстановлению здания ZMF после проведения энергоаудита и модернизации его инженерного оборудования, которое уже не соответствовало действующим требованиям, был объявлен тендер, который выиграла немецкая фирма Sauter, предложившая наиболее интересную концепцию по модернизации с последующей ее реализацией.

Проанализировав состояние здания, специалисты пришли к выводу, что энергосберегающий потенциал составляет не менее 27%, а снижение выбросов СО, возможно на 172 т.

Работы по ремонту здания ZMF начались весной 2016 года, а весной 2017 года были проведены пусконаладочные работы систем отопления и вентиляции и выполнено их регулирование с целью приведения их в соответствие современным требованиям.

В рамках модернизации были изменены существующие воздушные воздуховоды, установлены дополнительные компоненты систем измерения, управления, регулирования и автоматизации, демонтированы за ненадоб-

ОБ АВТОРЕ

Claudius Reiser

Клаудиус Райсер, продукт-менеджер для мероприятий по энергоэффективности фирмы SAUTER.

ностью вытяжные установки, а также установлены комнатные контроллеры. Для повышения безопасности персонала лаборатории все лабораторные вытяжные шкафы были оснащены специальной сигнализацией.

Концепция модернизации инженерного оборудования здания

Для оптимального внедрения инициатив по модернизации была разработана всеобъемлющая концепция. Для этого сначала проанализировали энергопотребление за прошедший период, текущий расход энергии и имеющееся инженерное оборудование. На основе данных, полученных при опросе пользователей, и требований, предъявляемых

зданием ZMF к качеству кондиционирования внутреннего воздуха и к уровню регулирования современного технического инженерного оборудования при его эксплуатации, был сделан прогноз по возможному сокращению энергопотребления. Расчет показал, что модернизация систем отопления, вентиляции и автоматизации позволят сократить расход энергии на 27%, а также уменьшить выбросы CO₂ на 172 т. Согласно анализу модернизация систем холодоснабжения не требовалась.

Было установлено, что реализовать определенный потенциал энергосбережения можно путем грамотного подбора мощности оборудования в соответствии с реальными потребностями в сочетании с регулированием нагрузки в зависимости от условий работы. Благодаря регулированию при изменении

*) Университетская больница г. Тюбинген (немецкая земля Баден-Вюртемберг), созданная в 1805 году, относится к центрам академической медицины в Германии и включает 17 больниц, 12 институтов и 15 исследовательских центров.

Лаборатория клеточной и молекулярной биологии (Zell- und molekularbiologisches Labor – ZMF) является научно-исследовательским рентгенологическим отделением университетской больницы г. Тюбинген. Деятельность лаборатории направлена в первую очередь на исследование воздействия электромагнитных полей и высоких частот на человеческие клетки (тема MR-Safety).

Лаборатория находится на улице Waldhörnlestraße, в здании, которое было построено в 1987 году и неоднократно меняло пользователей. По словам руководителя группы по энергетическому менеджменту технического ведомства данной больницы Ёрга Лиштенбергера, первоначально здание было построено как фармацевтическое предприятие с лабораториями немецкой фирмы CIBA Geigy GmbH из г. Вер в Бадене. Установленные в то время подразделения, такие как рентгеновские кабинеты, комнаты изотопов или камеры для очистки одежды и предметов,

загрязненных короткоживущими радионуклидами, уже давно не используются по назначению. При этом инженерное оборудование не было переориентировано на новые функции, в результате чего наблюдался существенный перерасход энергии.

Чтобы здание соответствовало повышенным требованиям по энергоэффективности, в 2006 году была модернизирована часть лабораторных помещений, а также установлен новый конденсационный котел и с помощью фирмы Sauter оптимизирована система регулирования производства и распределения тепловой энергии.

9HEPΓOCБΕРЕЖЕНИЕ №1-2019 HTTP://ENERGO-JOURNAL.RU/

целей использования помещений в будущем можно просто адаптировать режим работы инженерного оборудования. В результате установленное в здании ZMF оборудование предусматривает возможность изменения конфигурации в случае потенциального изменения целей пользования зданием или конструктивных переделок.

В процессе реализации были также предприняты существенные изменения в воздухораспределении в помещениях первого и цокольного этажей: трассировка воздуховодов и расход воздуха были адаптированы к реальным потребностям. Воздуховоды были установлены в подвесных потолках. Это, а также использование вентиляторов с переменным расходом воздуха привело к существенному уменьшению энергозатрат. Были установлены автоматизированные системы регулирования, а вентиляционные установки, не отвечающие требованиям (например, вытяжные), были демонтированы.

Автоматизация лабораторных вытяжных шкафов

Особенно важным моментом при модернизации здания ZMF было оснащение лабораторных вытяжных шкафов автоматической сигнализацией, опо-

вещающей об изменении скорости воздушного потока. До модернизации не было никакой системы, отслеживающей данный показатель. Теперь ситуация изменилась коренным образом – благодаря современной технике фирмы Sauter стало возможно визуальное наблюдение с помощью дисплея и контроль за функционированием лабораторных вытяжных шкафов. В системе используются интеллектуальный привод ASV215, регулятор расхода воздуха и контроллеры ecos500, предусматривающие полную коммуникацию друг с другом. Как только скорость воздуха, поступающего через открытое окно лабораторного вытяжного шкафа, уменьшается до 0,3 м/с, система выдает предупреждающий звуковой сигнал. Снижение скорости воздуха происходит, если окно шкафа поднято слишком высоко. При необходимости, если в лабораторном шкафу нет опасных веществ и шкаф, например, только готовится к работе, лаборант, взяв ответственность на себя, может отменить предупреждающий звуковой сигнал, что разрешает дальнейшее открытие окна.

С помощью установленных комнатных контроллеров и электрических приводов регулировочных клапанов радиаторов в помещении лаборатории можно создать комфортный микро-

климат. Особенностью установленной автоматики является возможность увеличивать и уменьшать воздухообмен в соответствии с необходимостью. Дело в том, что в любых лабораторных помещениях, и особенно рядом с лабораторными вытяжными шкафами, для безопасной работы требуется повышенный воздухообмен. Однако в здании ZMF лабораторная вытяжка часто не используется, поскольку большинство работ можно выполнять с помощью компьютера или за лабораторным столом. В часы, когда вытяжной шкаф отключен, можно сократить воздушный поток в два раза без ущерба для здоровья. В результате этого сокращаются как потребление энергии на 25%, так и шумовой эффект от потока воздуха и сквозняк.

Помимо этого, предусмотрена кнопка «Присутствие», одним нажатием на которую можно перевести системы вентиляции и отопления в режим экономии. Это актуально для преждевременного окончания исследовательской работы и ухода из лаборатории всех специалистов. В выходные дни нажатием кнопки «Присутствие» можно увеличить воздухообмен в зависимости от потребности. Таким образом, после

автоматизации инженерные системы работают только тогда, когда это действительно нужно.

Диспетчеризация здания

Регулирование и управление работой систем отопления и вентиляции ведется централизованно из диспетчерского центра университетской больницы. Здание ZMF находится почти в 6 км от центра контроля и управления, в промышленной зоне.

До установки дистанционного доступа к инженерным системам здания ZMF обслуживающий персонал при возникновении технологического сбоя был вынужден выезжать на каждый вызов и на месте искать причины проблемы. В результате для устранения неполадок и неисправностей требовались большие затраты рабочего времени.

Благодаря обеспечению дистанционного доступа сотрудники центра контроля и управления могут без выезда установить техническую проблему, определить ее масштаб, а также организовать ее устранение. Наряду с этим диспетчеризация позволяет лучше оценивать необходимость и срочность сервисного обслуживания.

Промежуточные результаты модернизации здания ZMF

В конце марта 2018 года закончился первый год работы после завершения модернизации инженерного оборудования здания ZMF. Можно констатировать, что расчетное сокращение расходов энергии на 27% было достигнуто, а выбросы CO₂ сокращены на 130 т.

Детальная оценка результатов, однако, показывает, что возможно дальнейшее снижение энергопотребления, особенно за счет процессов производства и передачи тепловой энергии. Для выявления оптимальных режимов в июле 2018 года были установлены мобильные теплосчетчики. Данные, собранные с приборов учета, и их мониторинг служат основой для определения дальнейших мероприятий по энергосбережению.

В заключение хочется отметить, что выполнение данного контракта по энергосбережению рассчитано на 7,2 года, в зависимости от прогресса в достижении поставленных целей. Пока все работы идут с опережением графика и достигнутый результат убеждает в правильности взятого курса.

6 ЭНЕРГОСБЕРЕЖЕНИЕ №1-2019